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Boiling and natural-convection processes in a horizontal, fluid-saturated porous layer 
are investigated. The layer is heated uniformly from below and is cooled from above. 
Volumetric cooling is also allowed. The thermodynamic structure consists of a liquid 
region overlying a two-phase region. Numerical techniques are used to solve the 
transient, two-dimensional equations in the liquid and two-phase regions, and at the 
phase-change interface. A parametric study is carried out in terms of the liquid-phase 
Rayleigh number (Ra) and the non-dimensional bottom heat flux (Q,). Three solution 
regimes are observed : conduction-dominated at low Ra, convection-dominated at 
intermediate Ra, and oscillatory convection at high Ra. In the convection-dominated 
regime, transitions to multiple cell patterns are observed as Q, is increased. Oscillatory 
convection appears to be triggered by asymmetric disturbances in the system. The 
effects of initial conditions and the stability of the solutions to perturbations are also 
investigated. The heat transfer correlations and qualitative flow patterns are in 
agreement with experiments. 

1. Introduction 
Boiling and natural convection represent two important heat transport mechanisms. 

In many problems, such as geothermal reservoirs, heat transfer by boiling and natural 
convection occur simultaneously, and their interactions are of fundamental as well as 
practical interest. The objective of this paper is to present a systematic study of boiling 
and natural convection in a fluid-saturated porous medium with an internal interface 
between the boiling and non-boiling zones. The present study is a numerical one, and 
it complements several experimental investigations previously reported in the literature. 

Heat transport phenomena in porous media have been receiving increased attention 
in the last decade or so. While much of the literature pertains to single-phase thermal 
convection, two-phase convection is probably the more dominant mode of heat 
transfer in geothermal systems. Studies on boiling in porous media have been mainly 
experimental, and theoretical studies have been restricted to one-dimensional 
geometries. Torrance (1983) presents a review of laboratory experiments on boiling in 
porous media, and Cheng (1978) and Bjornsson & Stefansson (1987) discuss the 
geothermal aspects. 

Experimental studies have considered porous beds heated from below and cooled 
from above. The geometries have varied from two-dimensional Hele-Shaw cells 
(Sondergeld & Turcotte 1978; Tewari 1982; Echaniz 1984) to cylindrical (Bau & 
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FIGURE 1.  Schematic of a two-layer phase structure in a fluid-saturated porous medium heated 
from below and cooled from above. Example liquid-phase streamlines are shown. 

Torrance 1982 a, b) and three-dimensional box geometries (Sondergeld & Turco tte 
1977). In all cases, the preferred phase structure is that of a liquid region overlying a 
two-phase region (figure 1). The underlying two-phase region is liquid dominated, 
essentially isothermal, and heat is transported by liquid-vapour counterpercolation. 

Several hydrodynamic regimes have been observed in the above-mentioned 
experiments. For low-permeability porous beds, the overlying liquid region is 
conduction dominated, and experiments agree well with one-dimensional models (Bau 
& Torrance 1982 a). For intermediate-permeability porous beds, the liquid region 
becomes convective, interacts with the underlying two-phase region, and mu1 ti- 
dimensional flows result. Two scenarios are possible. In the first scenario, thermal 
convection in the liquid region starts immediately or soon after the onset of boiling 
(Sondergeld & Turcotte 1977). Sondergeld & Turcotte (1977) concluded that a phase- 
change mechanism is responsible for driving the convection. In the second scenario, the 
convection starts before the onset of boiling (Tewari 1982; Bau & Torrance 1982b; 
Echaniz 1984). Visualization experiments (Tewari 1982; Sondergeld & Turcotte 1978) 
in a Hele-Shaw geometry clearly showed the liquid-region streaklines penetrating the 
two-phase region, and considerable interaction existed between the two regions. The 
phase-change interface between the liquid and two-phase regions is raised in the region 
of upwelling of the hot fluid, and depressed in the region of downwelling of the cold 
fluid (as sketched in figure 1). 

For high-permeability beds, the steady behaviour is replaced by an oscillatory 
regime (Tewari 1982; Echaniz 1984). This oscillatory regime is characterized by time- 
dependent fluctuations of the convective cell pattern. Echaniz (1984) carried out a 
detailed study of the oscillations using a network of thermocouples and computerized 
data acquisition. He concluded that the oscillations are caused by thermals (pairs of 
small vortices) which originate at the heating surface. The thermals are born where the 
cold fluid descends, and they grow and disappear either at the top boundary or in the 
two-phase region. Similar mechanisms have been proposed for oscillatory convection 
in the absence of boiling (Horne & Caltagirone 1980). As the heat flux is increased, the 
period of oscillations becomes shorter. In the laboratory experiments, these periods 
varied from a few hours at low heat fluxes to a few minutes at high fluxes. 
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In an effort to understand the interaction between boiling and natural convection 
phenomena, Ramesh & Torrance (1990~) recently carried out a linear stability analysis 
of boiling in porous media using the preferred two-layer phase structure with a 
conduction-dominated liquid region as the rest-state solution. They argued that boiling 
in porous media heated from below is governed primarily by two parameters: the 
liquid-phase Rayleigh number based on the temperature difference across the porous 
bed (Ra), and the dimensionless heat flux at the bottom (Qb). They showed that for 
liquid-dominated systems, the critical Rayleigh number is lowered by the presence of 
a two-phase region thereby enabling thermal convection in the liquid region to set in 
after the onset of boiling. They used a stability diagram in Ra-Q, parameter space to 
provide a qualitative understanding of the laboratory experiments. In a related study, 
Ramesh (1988) analysed the energies of perturbations in such a system and showed that 
the convective instability may be produced by both thermal buoyancy and phase- 
change effects. 

This paper presents a detailed numerical study of natural convection with boiling in 
a fluid-saturated porous layer. A two-dimensional rectangular porous bed with 
properties representative of laboratory experiments is used. The objective of the study 
is to obtain finite-amplitude solutions of liquid-region convection in the presence of 
boiling. Experiments on boiling in porous media clearly display a wide range of 
behaviour. We seek to understand the transitions between the conduction-dominated 
solutions at low permeabilities and the steady convection-dominated solutions and 
oscillatory convection solutions at higher permeabilities. 

In the following section (8 2), the governing equations in the liquid (non-boiling) and 
two-phase (boiling) regions are presented, together with the compatibility conditions 
at the interface between the regions. These equations are solved numerically using the 
approach proposed in Ramesh & Torrance (1990b). A parametric study is carried out 
in Ra-Q, parameter space to explore the range of possible solutions ($3). The effects 
of initial conditions, the stability of the solutions to perturbations, and comparisons 
with experiments and linear stability analysis are reported. 

2. Mathematical formulation 
We consider a porous domain bounded by two horizontal parallel planes which are 

separated by a distance H as sketched in figure 1. We assume a finite lateral dimension 
L and two-dimensional motion in the (x, y)-plane. We further assume the porous layer 
to be uniform, isotropic and fully saturated with fluid. 

2.1. Governing equations 
The thermodynamic structure of the porous medium after the onset of boiling consists 
of a liquid region overlying a two-phase region. The Boussinesq approximation is used 
to account for buoyancy effects in the liquid region. The two-phase region is taken to 
be isothermal at the boiling temperature (TZut). 

The equations are made non-dimensional using the following reference quantities : 
length, H ;  time, H 2 / a ,  where a$ is the thermal diffusion coefficient of the liquid- 
saturated porous medium; and temperature, T = (T* - Tt)/(TZut- T,*) where T,* is 
the temperature of the top boundary. The governing equations in the liquid and two- 
phase regions in dimensionless form are: 

liquid 
V.v ,  = 0 (continuity), 
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u1 = - Vp - Ra T e ,  (Darcy’s eq.) 

(3) 
aT 

,dl - + v1 - V T  = V’T- Bi T (energy); at  

two-phase 

UD 
P 2  5 + v * ( u1 +p, u,) = 0 (continuity), (4) 

u1 = -k,,(Vp+ Rae,) (Darcy’s eq. for liquid), (5 )  

u, = - k,,p,(Vp + Ra,, eJ (Darcy’s eq. for vapour), (6 )  

(7) 
a 
at 

#~,h-(l-SS)+V.&hu,) = -Bi (energy); 

where the quantities T, p ,  u and S are the temperature, pressure, velocity vector and 
liquid saturation, respectively; q5 denotes the porosity of the layer; the subscripts 1, z), 

and s represent liquid, vapour, and porous medium, respectively; ey is the unit vector 
in y which is assumed positive in the direction of the gravity vector. 

Ra is the liquid-phase Rayleigh number given by 

where K is the permeability of the porous layer, g is the acceleration due to gravity, /I1 
is the liquid thermal expansion coefficient, (T,*,, - T,*) represents the difference between 
the boiling temperature (T,*,,) and the temperature of the top boundary (c), and vl 
denotes the kinematic viscosity of the liquid phase. Ra,, is the two-phase Rayleigh 
number based on the density difference between the phases given by 

where p, = pv/pl and p denotes the density. We note that the two Rayleigh numbers 
are related by a density ratio parameter, y = Ra/Ra,,, which is the ratio of the 
maximum density change in the liquid region to the density difference between phases 
in the two-phase region. y involves physical properties and boundary temperatures. If 
these are known, Ra and Ra,, are not independent, but are related by Ra = Ra,@ y. We 
also note that for a given working fluid, Ra may be used as a measure of the 
permeability of the porous layer. 
Bi is a volumetric heat loss parameter. It accounts for thermal losses through the 

front and back walls of a Hele-Shaw type convection cell. Such losses are proportional 
to the temperature difference between the porous bed and the surrounding ambient 
medium. For a Hele-Shaw geometry, 

where h is the heat transfer coefficient from the bed to the ambient, k, is the effective 
thermal conductivity of the porous matrix, and d is an effective front-to-back thickness 
of the Hele-Shaw cell. The ambient temperature is assumed to be T,*. 
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Additional parameters appearing in equations (l)-(7) are: A, a latent heat parameter, 
= h,,/(C,(T,*,,- I",*)) where h,, is the latent heat of vaporization iind C is the specific 
heat at constant pressure; /I, = (( 1 - $)ps C, + $p, C,)/@, C,) is a ratio of heat 
capacities; Pz = #(1 -p,); and ,a, = pl/pv is the ratio of viscosities (p). k,, and k,, are 
the relative permeabilities for the liquid and vapour phases in the two-phase region 
which account for the drag due to the presence of the other phase. k,, and k,, are 
typically expressed as functions of the saturation (Torrance 1983), although linear 
forms are assumed here. 

Note in (5 )  and (6) ,  that the liquid and vapour phases in the two-phase region are 
locally taken to be at the same pressure, p .  This follows when the mean radius of 
curvature of the interfaces separating the phases (at the pore level) is large, and the 
capillary pressure difference may be neglected. Thus, in ( 5 )  and (6),  the flow of each 
phase is driven by the difference between Vp and the hydrostatic gradient for each 
phase. Capillary pressure effects can arise for very fine-grain porous media, or when 
wicking action (and not gravity) is important for the movement of the liquid phase. For 
simplicity, capillary pressure effects will be neglected in the present analysis. 

The interface between the liquid and two-phase regions is represented functionally 
by y = &(x, t) .  We assume that 6 is continuous and differentiable. The following 
compatibility conditions are prescribed at the interface, 6(x, t )  : 

p +  = p- (pressure is continuous across the interface), (1 1) 
(12) 

(ul-(ut+p,u~)-alui).n = 0 (mass balance), (13) 
(VT- + pv hu,f - a2 vi) - n = 0 (14) 

T - =  1 (the interface is at the phase change temperature), 

(energy balance), 

where a, = q5(1 -p,) (1 - S )  and az = q5pv A( 1 - S ) .  ui denotes the local velocity of the 
interface, and n the unit vector normal to the interface. The superscripts - and + 
represent the liquid and the two-phase sides of the interface, respectively. 

2.2. Boundary conditions 
The upper boundary is permeable (see figure 1) and therefore allows for non-zero 
normal velocities. This boundary is modelled as a constant-pressure surface ( p  = 0). 
Physically, this allows natural discharge and recharge of fluid at the upper boundary, 
as would occur if the upper boundary were overlain by a liquid reservoir. The 
temperature at the upper boundary is maintained at ambient temperature (T  = 0). The 
bottom boundary is treated as impermeable with a uniform heat flux Qb prescribed 
upon it, with Qb defined as 

where qz is the dimensional heat flux at the bottom boundary. Note that Qb = 1 
represents the maximum conduction flux across a liquid-saturated porous layer of 
height H and conductivity ke before the onset of boiling (for the case when Bi = 0). 
When a two-phase region is in contact with the bottom boundary, the impermeability 
condition implies zero net mass flux, i.e. (u, +pw v,)-n = 0; and the thermal boundary 
condition implies p, Av,.n = Qb. Therefore, the two-phase region supports non-zero 
fluxes of liquid and vapour at the bottom boundary which are each equal in magnitude 
to the rate of evaporation. The lateral boundaries at x = 0 and A R  are impermeable 
and adiabatic. Heat losses from the front and back boundaries (i.e. the z-boundaries 
of a Hele-Shaw cell) are modelled with the Bi term. 
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FIGURE 2. Typical computational grid in (a) the physical domain and (b) the transformed domain. 

2.3. Numerical method 
The numerical scheme is based on a fully implicit finite-difference control volume 
method. The scheme solves the coupled flow and heat transfer equations for the liquid 
region, two-phase region, and the interface. The Landau coordinate transformation 
(6 = x, ql = y/6 in the liquid region, and q2+ = (1 -y)/(l -8) in the two-phase region) 
is used to fix the interface in (6,q)-coordinates at q = 1 (see figure 2). The equations 
are discretized and solved in the transformed spatial domain. 

At each time step, the scheme advances the interface using the local energy balance 
(equation (14)). Subsequently, the pressure, saturation (in the two-phase region) and 
temperature (in the liquid region) are advanced. Iteration is performed until the 
position of the interface converges at the new time level before advancing to the next 
time level. The implicit nature of the solution, including the implicit movement of the 
interface, allows stable time integration. A detailed description of the numerical 
algorithm and its accuracy and convergence properties is given in Ramesh & Torrance 
(1 990 b). 

An important aspect of this study is the stability of the conduction and finite- 
amplitude convection solutions to symmetric and asymmetric disturbances. Traditional 
wisdom is that higher-order spatial schemes (e.g. fourth-order) are required to resolve 
oscillatory flows (Gary & Kassoy 19Sl), as against second-order accuracy required to 
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resolve steady convection flows. The present numerical scheme is only second-order 
accurate (Ramesh & Torrance 1990b) and to incorporate a fourth-order scheme within 
the framework of the present problem would be very expensive computationally, and 
is beyond the scope of this study. However, an important feature of the present 
numerical scheme is the accurate solution of the Poisson equation for pressure using 
a pre-conditioned conjugate gradient algorithm. Iterative schemes such as successive 
over-relaxation which involve sweeps along specific spatial directions are unsuitable for 
stability studies because they can introduce spatial bias in the temperature fields which 
can affect the preferred convective solution. The conjugate gradient algorithm on the 
other hand appears to be free from any spatial bias and can be used reliably to study 
the stability of solutions to different wavelength disturbances. The numerical scheme 
was benchmarked successfully for several cases involving the onset of convection 
(single-phase and two-phase convection), and finite-amplitude solutions (for single- 
phase convection) prior to its use in the present study (Ramesh 1988). 

In the present study, the typical run times for steady solutions on an IBM 3090-600E 
computer varied from 200 CPU seconds on a coarse grid (16 x 10+7) to 1000 CPU 
seconds on a fine grid (32 x TCTFi). Oscillatory solutions were comparatively 
expensive to compute owing to the long periods of oscillations and the large number 
of time steps needed to follow them. A typical run time for an oscillatory solution on 
a 24 x 15+10 grid was about 2500 CPU seconds. Note that a M x N,  + Nze grid denotes 
M node points in 6, Nl node points in T ~ ,  and Nz4 node points in qZ4. 

3. Results and discussion 
The primary parameters of interest are the liquid Rayleigh number Ra and the non- 

dimensional heat flux at the bottom Qb. The parameter Bi controls the rest-state 
conduction solution of the system, which ranges from a linear temperature profile for 
Bi = 0 to an exponential one for Bi > 0. Linear stability analyses with zero and non- 
zero values of Bi have yielded essentially the same qualitative features for the solution 
regimes (Ramesh & Torrance 1990a; Ramesh 1988; see also figure 15 here). For the 
present study, Bi is assumed to be fixed. To allow some limited comparison with 
laboratory experiments, an aspect ratio of L / H  = 2 and a value of Bi = 8.4 are 
assumed. 

Representative ranges examined for the Ra and Qb parameters are 0 < Ra < 60 and 
0 ,< Q, < 12. The physical property parameters are evaluated using water as the 
working fluid, T: = 30 "C and T&, = 100 "C (typical of laboratory experiments), 
liquid and vapour properties evaluated at T,* and T,*,,, respectively, and a porous 
medium consisting of glass beads or silica sand: therefore, q!~ = 0.35, p, = 0.6068 x lop3, 
pi = 38.67, ps CJp, C, = 0.5820, y = 0.03663 and y = 7.706. These values are held 
fixed. In addition, we choose linear relative permeabilities, k,, = S and k,, = 1 - S,  and 
assume the two-phase region to be liquid dominated. 

Two types of initial condition are of interest for stability studies. The first is the 
conduction solution (one-dimensional) for the given set of input parameters (Ra, Qb) 
which is perturbed by introducing hot and cold spots (of magnitude 0.001) along 
y = 0.5 in the temperature field. These perturbations generate a weak convective flow of 
the desired cellular pattern. This initial flow may grow, decay or migrate to an alternate 
cellular pattern. In the absence of the perturbation, the solution does not depart from 
the initial condition. (This implies that the numerical scheme itself is relatively noise 
free, and does not generate flows due to error accumulation.) We consider two types 
of perturbations: symmetric perturbations (about x = 1) which are obtained by 
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FIGURE 3. Steady-state temperature T and pressure p in a porous layer with a quiescent liquid zone 
overlying a two-phase zone, Ra = 20, Q, = 5. The dashed line denotes the upper boundary of the 
two-phase zone. On the right-hand side are shown, in transformed coordinates, the saturation S, 
vapour velocity u, and liquid velocity u, in the two-phase zone, with ~uJrnaz = lullmaz = 0.63. 

No. 
A1 
B1 
B2 
B3 
B4 
B5 
c 1  
c 2  
c 3  
c 4  
Dl  
D2 
D3 
D4 
El 
E2 
Fl 
F2 

Ra 
20 

40 

50 

60 

40 
40 
60 
60 

Qb 

5 
3 
4 
5 
7 

10 
2.5 
5 
7 

10 
2.5 
5 
7 

10 
12 
12 
7 

10 

Grid 
1 6 x 1 0 ~ 7  
1 6 x 1 0 ~ 7  
3 2 x 2 0 ~ 1 4  
32 x 20 x 14 
3 2 x 2 0 ~ 1 4  
3 2 x 2 0 ~ 1 4  
32 x 20 x 14 
32 x 20 x 14 
3 2 x 2 0 ~ 1 4  
32 x 20 x 14 
3 2 x 2 0 ~ 1 4  
3 2 x 2 0 ~ 1 4  
32 x 20 x 14 
3 2 x 2 0 ~ 1 4  
1 6 x 1 0 ~ 7  
3 2 x 2 0 ~ 1 4  
24x 15x 10 
24 x 15 x 10 

Initial condition 
COND for Qb = 3 
COND 
B3 
COND 
B3 
B3 
COND 
B3 
B4 
B5 
Cl 
c 2  
c 3  
D3 
COND 
B5 
COND+ASYM 
COND + ASYM 

Solution regime 
I11 (figure 3) 
I11 (figure 5 4  
IV (two cells, figure 5b) 
IV (two cells, figure 5 c )  
IV (two cells, figure 5 4  
IV (two cells, figure 5e) 
I1 (two cells, figure 60) 
IV (two cells) 
IV (two cells, figure 6b) 
IV (two cells) 
I1 (two cells, figure 7a) 
IV (two cells, figure 76) 
IV (four cells, figure 7c) 
IV (four cells, figure 7 4  
I11 
IV (two cells) 
IV (oscillatory, figures 11, 13) 
IV (oscillatory, figures 12, 14) 

TABLE 1. Summary of numerical simulations. COND denotes a one-dimensional conduction solution 
with symmetric perturbations, and COND + ASYM denotes a one-dimensional conduction solution 
with asymmetric perturbations. The final column refers to regions shown on figure 15: I denotes a 
conductive liquid layer; I1 a convective liquid layer; I11 a conductive liquid layer overlying a two- 
phase layer; and IV a convective liquid layer overlying a two-phase layer (flows can be steady or 
oscillatory). 
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introducing two hot spots along the sides (x = 0,2) and one cold spot in the middle 
(x = 1); and asymmetric perturbations which are obtained by introducing a hot spot at 
x = 0 and a cold spot at x = 2. A second type of initial condition used is the converged 
solution from a different set of input parameters. 

A summary of the numerical experiments is given in table 1 .  Three solution regimes 
are observed : conduction dominated, steady convection dominated, and oscillatory 
convection. In some cases the solutions exhibit a dependence on initial conditions and 
perturbations. 

3.1. Conduction-dominated regime 
Conduction-dominated solutions occur for small Ra (low permeabilities). The steady- 
state fields (figure 3) indicate one-dimensional behaviour. The liquid and vapour 
velocity fields in the two-phase region clearly show heat transport due to 
counterpercolation. There is slightly less vapour at the top of the two-phase region 
(larger S )  than at the bottom owing to vapour condensation due to sidewall heat loss 
to the ambient (i.e. the Bi term). 

The transient evolution of the interface position and the two-phase saturation field 
due to a step change in bottom heat flux (from Qb = 3 to Qb = 5)  are shown in figure 
4. The interface is planar at all times, indicating the absence of buoyancy-driven 
convection in the liquid region. The timescale for saturation transients in the two-phase 
region is 3 to 4 orders of magnitude smaller than the thermal diffusion timescale for the 
porous layer (i.e. the reference timescale). The chosen time step (At = lob4), while it is 
sufficient to resolve interface movements and other transient fields, is too large to 
resolve early saturation transients in the two-phase region. The oscillations observed 
at early times in the saturation profile result from this. The saturation at the bottom 
of the two-phase region reaches steady state almost instantaneously ( t  M lo-", but the 
saturation near the top of the two-phase region continues to change owing to the 
motion of the interface. 

3.2. Steady convection-dominated regime 
The onset of convection takes place when the Rayleigh number exceeds the critical 
value (Ramesh & Torrance 1 9 9 0 ~ ) .  Convection can set in before or after the onset of 
boiling. 
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FIGURE 5. Steady state temperature T and stream function @ for Ra = 40 and various heating rates, 
Qb: (a) Q, = 3, (b) 4, (c) 5, ( d )  7 and (e) 10. The onset of convection occurs after the onset of boiling. 

3.2.1. Onset of convection after the onset of boiling 
In this regime, the solution is conduction dominated at the onset of boiling (figure 

5a, Ra = 40, Qb = 3), but convection sets in as the bottom heat flux is increased (figure 
5b-e, Ra = 40, Qb 2 4). Note that the stream function ($) for the convective solutions 
is based on ul in the liquid region, and ul +& u, in the two-phase region. The preferred 
convective mode is two cells. The solution is symmetric about the centre (x = 1). 



Boiling 

I 1 

T 

I I 

T 

in a porous layer heated from below 299 

(a) mlpJ 
-1 0.8 

w P 

w P 

'*---,.. . . . . , , - -d ..... ..... ................... 
b - - - - - a - .  . - - - + - - - - #  

* - - - * - * * .  . ,..*----* ................... ................... ................... 
S 

FIGURE 6. Steady-state solutions for Ra = 50 at two heating rates, Qb. The onset of convection occurs 
before the onset of boiling. (a) Q, = 2.5. Convection but no boiling. (b) Q, = 7. Convection with 
boiling. The four lower figures show, in transformed coordinates, +2a, S, vu and vl in the two-phase 
zone, with IvJrnaz = 0.91 and Ivllmaz = 23.66 in the two-phase region. 

Many qualitative aspects of the experimental results are preserved in the numerical 
solutions. The interface (dotted line) moves up as the heat flux is increased. The 
interface is depressed in the middle indicating downflow of the cold fluid, and raised 
at the sides indicating upflow of the warm fluid. The strength of the circulation 
increases with heat flux. The centre of the cell always lies in the liquid region. This is 
because the buoyancy production term is present in the liquid region, and not in the 
two-phase region. The liquid velocities are of the order of m/s, which is consistent 
with the velocities of streaklines observed in visualization experiments (Sondergeld & 
Turcotte 1978; Tewari 1982). 

3.2.2. Onset of convection before the onset of boiling 
Results for Ra = 50 and 60 are shown in figures 6 and 7, respectively. The single- 

layer solution before the onset of boiling (Qb = 2.5, figures 6a, 7 4  shows a stable two- 
cell convection pattern. This pattern is retained after the onset of boiling (figures 6 b, 
7 b). The pressure contours (figure 6 b) indicate larger pressure gradients in the two- 
phase region. Larger pressure gradients also exist near the interface on the liquid side 
due to the higher temperatures. 
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Temperature, T Stream function, I,U 

FIGURE 7. Steady-state temperature T and stream function $ for Ra = 60 and various heating rates, 
Q,. The onset of convection occurs before the onset of boiling. (a) Q, = 2.5, (b) 5,  (c) 7, (d )  10. 

In the region of downflow (i.e. the middle), the liquid moves slowly but heats up over 
a relatively short region, which is corroborated by the larger temperature gradient in 
the middle. The energy balance at the interface (equation (14)) at steady state implies 
a balance between the energy released by condensation of vapour and the conductive 
heat flux in the liquid region at the interface. Consequently, the vapour velocities are 
larger in the middle, and also there is more vapour present in the middle as is evident 
from the saturation contours (figure 6b) .  The energy for evaporation of the liquid 
crossing the interface near the middle is provided by the condensation of this excess 
vapour. In the two-phase region, the liquid velocity field is more or less aligned with 
the stream function ($z+). Note that $z# is plotted in the transformed space (5, vz#) 
for greater clarity. There is counterflow of liquid and vapour in the middle, while there 
is crossflow near the sides. Similar behaviour for liquid and vapour flow in liquid- 
dominated systems has been observed in Lasseter’s calculations (Lasseter 1975). 

For Ra = 60 (figure 7), a transition from the two-cell structure to a steady four-cell 
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Experiments Present study 
Q,,, for steady convection K Rap5 K Ru,”.~ 
Mean Q,,, for oscillatory convection cc Ra0.975 f cc Ra:22 
Time period of oscillation Ra-0 .64  f  K 

TABLE 2. Comparison between experiments (Echaniz 1984) and present numerical simulations. 
(Ra, = Rae,) .  

structure is observed as Qb is increased from 5 to 7 (figure 7b, c). All four cells are of 
approximately the same strength, and the solution is again symmetric about the centre. 
Tewari (1982) also observed transitions from two to four cells in his experiments as he 
increased the heat flux. However the stable three-cell solutions observed in Tewari’s 
experiments were not observed in the present numerical simulations. This may be 
attributed to slight inhomogeneities in the experimental bed leading to non-uniformities 
of the bottom heating which have not been modelled computationally. It is 
encouraging, however, to note that the numerical scheme is able to accurately follow 
the transition from two to four cells. 

Transient features of the case Ra = 50, Qb = 7 are shown in figures 8 and 9. The 
steady-state solutions for this case were discussed earlier in connection with figure 6 (b). 
The initial condition is the one-dimensional conduction solution with a flat interface. 
Convection sets in at time z 0.25, and the interface continues to distort as the 
convection gains in strength (figure 8). The interface moves down, thereby lowering the 
temperature gradients in the liquid region. It is interesting to note that the interface 
shape remains symmetric about the centre at all times. This is a consequence of the 
symmetric perturbations introduced in the initial condition. The heat transfer at the 
top of the porous bed (Qtop) versus time is plotted in figure 9. The onset of convection 
is indicated by the sudden rise in the heat transfer rate. There is an overshoot of the 
steady-state interface position and a corresponding overshoot in the value of Qtop 
because the interface motion is rapid compared to the diffusion timescales. 

The steady-state heat flux, Qtop, for the two-cell solutions is shown in figure 10 as a 
function of the heat-flux Rayleigh number Raf(=  Rae , ) .  The best-fit line suggests 
Qtop oc Ray,6, which approximates the Nusselt number (Nu) correlation Nu cc Ray.5 
reported by Echaniz (1984). The scatter in the data points suggests some dependence 
on Ra as well. 

The convection-dominated solutions discussed so far have the descending leg in the 
middle, and ascending legs at the sides. Clearly, from symmetry arguments a solution 
with descending legs at the sides and an ascending leg in the middle must also exist. 
Such solutions can be generated by using appropriate perturbations, for example a hot 
spot in the middle and cold spots along the sides. 

3.3. Oscillatory-convection regime 
Oscillatory convection is observed experimentally for high-permeability porous beds 
(i.e. high Ra). Such solutions can also be generated numerically for high Rayleigh 
numbers by introducing asymmetric perturbations into a one-dimensional initial 
conduction field. In laboratory experiments there can be several sources of asymmetric 
perturbations, which may explain why oscillatory convection can be triggered for high- 
permeability porous beds. 

Oscillatory solutions for Ra = 60, Qb = 7 and 10 are depicted in figures 11 and 12, 
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FIGURE 8. Transient interface motion for conditions corresponding to figure 6(b), Ra = 50, 
Q,  = 7. Initial condition: one-dimensional conduction solution. 

10 

8 

6 

QtOP 

4 

2 

0 0.2 0.4 0.6 0.8 1 .o 
Time, z 

FIGURE 9. Heat transfer through the porous bed: Q,,, versus time for conditions corresponding to 
figure 6(b), Ra = 50, Qb = 7. Onset of convection takes place at  time % 0.25. 
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FIGURE 1 1 .  Oscillatory convection for Ra = 60, Q, = 7. This flow differs from the steady flow in figure 
7(c) in that it started from an asymmetric initial disturbance. Period of oscillations = 0.64. (a) Qtpp 
versus time. (b) Isotherm, T, variation with time. Individual graphs correspond to the open circles in 
(a) during the time period marked 'Story'. 
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FIGURE 12(a). For caption see facing page. 

respectively. Steady-state counterpart solutions for these two cases (using symmetric 
initial disturbances) are shown in figures 7 (c) and 7 (d ) .  The oscillatory solutions were 
generated by introducing asymmetric perturbations in a one-dimensional conduction 
solution (a hot spot near the left sidewall) and correspond to converged limit-cycle 
behaviour. Figures 11 (a) and 12(a) show the variation in heat transfer through the bed 
(Qtop) versus time and figures l l (b)  and 12(b) show the corresponding isotherm 
variations during one cycle. Individual isotherm graphs correspond to the open circles 
shown on the heat flux transients. In figure ll(b), the isotherms clearly show the 
formation of a thermal by the distortion of the phase interface in the middle of a two- 
cell streamline pattern. As the thermal grows, the solution evolves to a four-cell 
pattern. The thermal escapes through the upper permeable boundary, and the solution 
returns to the two-cell pattern. The minimum heat transfer corresponds to the four-cell 
pattern, while the maximum heat transfer corresponds to the two-cell pattern. In figure 
12(b), the isotherm patterns repeat every two cycles in the QtOp. versus time curve. The 
thermal disappears alternately from the top left and the top right of the bed. Similar 
oscillations were observed in experiments (Echaniz 1984). Note the mirror symmetry 
of the isotherm graphs in the left and right columns of figure 12(b); each left-right pair 
corresponds to the same phase point in successive cycles of the oscillations. 

The time period of the oscillations ( T ~ )  decreases with increase in Qb. The time 
periods are of the order of hours (15 to 20 h) for the results reported here. In the 
experiments, the time periods varied from 3 to 10 hs. A comparison of the dependence 
of heat transfer rates (Q,,,) and time period (TJ on Ray is given in table 2. It is 
interesting to note that the heat transfer rates are drastically increased by the onset of 
oscillatory convection. 

The oscillatory flows in figures 1 1  and 12 undergo periodic transitions from a two- 
cell pattern to a four-cell pattern through a series of asymmetric intermediate 
structures. This may explain why asymmetric perturbations are required to generate 
oscillatory flows. Symmetric perturbations generate symmetric solutions but not the 
asymmetric disturbances apparently required to trigger oscillations. At low Rayleigh 
numbers, there is sufficient damping in the system to prevent asymmetric perturbations 
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FIGURE 12. Oscillatory convection for Ru = 60, Q, = 10. This flow differs from the steady flow in 
figure 7 ( d )  in that it started from an asymmetric initial disturbance. Period of oscillations = 0.54. (a) 
Q,,, versus time. (b) Isotherm, T, variation with time. Individual graphs correspond to the open 
circles in (a) during the time period marked ‘Story’. 



306 P.  S. Ramesh and K. E. Torrance 

0.5 

0.4 
6,If 

0.3 

0.44 0.46 0.48 0.50 
6 0  

- 10 -8 -6 -4 
Q top 

FIGURE 13. Two-dimensional phase portraits for the oscillatory flow in figure 11, Ra = 60, 
Q, = 7. (a) Projection in S,-S, phase space. (b) Projection in Q,,,-Q,,, phase space. 
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FIGURE 14. Two-dimensional phase portraits for the oscillatory flow in figure 12, Ra = 60, 

Q, = 10. (a) Projection in 6,-6,,, phase space. (b) Projection in Q,,,Q,,, phase space. 

from growing and consequently symmetric solutions are still preferred. However, at 
high Rayleigh numbers, the damping is small, and any asymmetric perturbations 
introduced in the solution continue to circulate within the system. 

To understand time-dependent solutions in large-dimensional computational phase 
space, it is often useful to consider projections of the solution in a two-dimensional 
space. The projections may be constructed in many ways, the simplest being to use the 
state variable values at a few grid points. Another possible projection is to use a global 
variable such as the heat transfer through the porous bed. Figures 13 and 14 show two 
such phase projections for Qb = 7 and Qb = 10, respectively. The first projection is 6 
(interface position) at the two sides of the porous bed, denoted by 8, at x = 0 and SL,H 
at x = L / H .  The second projection is the net heat transfer across the interface (Q,,,) 
and the net heat transfer at the top (Qtop). Note that in figure 14, the global projection 
(Q,,, versus Qtop) does not indicate the flip-flop behaviour of the thermals, whereas the 
local projection (So versus aLLIH) does. Figures 13 and 14 confirm the periodic nature of 
the solutions. No chaotic solutions were observed for the range of parameters 
considered here. 

Thus, the boiling-convecting system can display either steady four-cell or oscillatory 
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two-cell/four-cell convection patterns at fixed values of Ra and Q,, depending on 
whether symmetric or asymmetric initial disturbances are used, respectively. Further 
work needs to be done to verify if this is a criterion for oscillatory convection. 

3.4. Eflect of initial conditions 
At high heat fluxes, steady-state solutions may also depend on the choice of initial 
conditions. To elaborate, consider the case Ra = 40, Qb = 12. Linear stability theory 
(Ramesh & Torrance 1990 a) suggests that the one-dimensional conduction solution is 
stable for this choice of parameters (see also $3.5 and figure 15 of this paper). This can 
indeed be verified numerically by using the one-dimensional conduction solution as the 
initial condition and perturbing it. But if the initial condition is instead the steady-state 
convective solution for Ra = 40, Qb = 10 (figure 5e), then the solution converges to a 
two-cell convective solution. The second choice of initial condition represents a large- 
amplitude perturbation from the one-dimensional conduction solution and therefore 
cannot be predicted by linear stability theory. 

3.5. Stability boundaries in Ra-Q, space 
Using linear stability analysis it is possible to determine the boundaries of some of the 
numerically observed solution regimes in Rae, parameter space. The curves in figure 
15 were obtained by using the stability analysis of Ramesh & Torrance (1990a), with 
a non-zero heat-loss parameter of Bi = 8.4, and assuming a two-cell (wavenumber x) 
mode. The curves divide the solution space into four regimes, corresponding to a 
conductive liquid layer (region I) and a convective liquid layer (region 11), both without 
underlying two-phase zones, and a conductive liquid layer (region 111) and a convective 
liquid layer (region IV), both with underlying two-phase zones. Thus, in regions I and 
I11 there is no convection in the liquid layer, whereas in regions I1 and IV there is. 

Also superimposed in figure 15 are data points from the present numerical 
experiments. It should be pointed out that the linear stability theory considers only the 
first (or leading)-order effects whereas the present study based on the numerical 
solution of the complete equations allows for higher-order effects as well. It is 
interesting to note that the linear stability analysis does predict the transitions 
corresponding to the onsets of convection and boiling that were obtained numerically. 
The sole exception is the one point for Ra = 40, Qb = 12 for which either steady- 
convective or steady conductive liquid layer solutions could be obtained numerically 
depending on the initial condition. Such transitions, and mode switching to oscillatory 
flows, are not predicted by linear stability theory. Further, using finite-amplitude 
numerical solutions to define the transition curves would require significantly larger 
computational resources than were available for the present study. 

Based on the numerical solutions and the linear stability analysis, the following 
conclusions can be drawn : 

(i) Conduction solutions in regime I11 are unstable to large perturbations at high 
Rayleigh numbers. 

(ii) For high Rayleigh numbers in regime IV, increasing the heat flux leads to 
transitions to higher-wavenumber convective solutions. 

(iii) For high Rayleigh numbers and heat fluxes in regime IV, steady convective 
solutions may be unstable to asymmetric perturbations leading to oscillatory 
flows. 
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FIGURE 15. Comparison of numerical solutions (symbols) and linear stability theory (solid lines) in 
Ru-Q, parameter space. I, 11, I11 and IV denote four solution regimes: I, a conductive liquid layer 
- no boiling; 11, a convective liquid layer - no boiling; 111, a conductive liquid layer overlying a two- 
phase layer; IV, a convective liquid layer overlying a two-phase layer. The numerically observed 
solution regimes are: *, steady convective liquid layer - no boiling; V, steady conductive liquid 
layer overlying a two-phase layer; 0,  steady convective liquid layer overlying a two-phase layer; +, 
steady or oscillatory convective liquid layer overlying a two-phase layer; x , steady conductive or 
steady convective liquid layer overlying a two-phase layer. 

4. Summary 
Results of a numerical study of boiling and natural convection in a fluid-saturated 

porous medium, with a moving liquid/two-phase interface, are reported. The finite- 
amplitude solutions agree with a linear stability analysis of the system as well as with 
prior laboratory experiments. Transitions to multiple-cell solutions, and effects of 
initial conditions and perturbations, were studied. At high Rayleigh numbers, steady 
or oscillatory convection solutions may occur depending on whether symmetric or 
asymmetric perturbations trigger the convection, respectively. 

This paper is based on the doctoral dissertation of the first author which was 
supported by the Division of Mechanical Engineering and Applied Mechanics of the 
National Science Foundation under Grant MEA-8401489. Computations were carried 
out using the Cornell National Supercomputer Facility, a resource of the Center for 
Theory and Simulation in Science and Engineering (Cornell Theory Center), which 
receives major funding from the National Science Foundation and IBM Corporation, 
in addition to support from New York State and members of the Corporate Research 
Institute. 
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